Guide to significantly increase efficacy of maintenance in biotech plants

How the right gasket selection reduces maintenance related costs and efforts

30.06.2021

Flex-Pure™ EPDM: Increasing production uptime & reducing total cost of ownership

Our Mission Together

Our Mission Together:

- Partners with a high level of expertise
- Work closely together to serve verified market needs
- Serving special market needs

Up to the challenge:

- Keeping up with the pace
- Reduce Waste, Smaller Footprint
- Safer Products and Production
- Less Maintenance

Maintenance in Biotech plants

Industry trends

Rubber Fab

Maintenance in Biotech plants

What does it take?

30.06.2021 I 4 / 27 I Maintenance in Biotech plants (Flex-Pure™ EPDM)

One Common Misconception

Gasket Adhesion - And the impact on maintenance

- What cause a Gasket to adhere on a steel flange?
- Do all EPDM Compound Materials perform the same way?
- And what are the consequences for maintenance?

Problems of surface adhesion

- Loss of surface pressure
- Swelling of the gasket
- Excessive cleaning

One Common Misconception

What Causes Gasket Adhesion?

Gasket Adhesion and the impact on maintenance

- Blooming / Compound "sweating of gasket"
- Physical Properties
- Curing (Over and Under Curing)
- Wrong application
- Chemicals, Temperature or Sterilization

Maintenance Cost

Calculation of Installation Cost

Maintenance time on hygienic connection

Number of connections in Biotech plant	1.000
Average intallation time to replace a gasket	20 min
Average time to re-torque a gasket	5 min

30.06.2021 27 Maintenance in Biotech plants (Flex-Pure™ EPDM)

a Garlock Hygienic Technologies company

ibber

Fab

3.000,00€

Maintenance Cost

Calculation of installation costs + Gaskets Sticking to Flanges

Cleaning flanges	Value
Number of connections in Biotech plant	1.000
Number of flanges	2.000
Time to clean 1 flange	10 min
Time to clean 2.000 flanges	333h
Labor costs	40 €/h*
Overall Costs Cleaning Flanges	13.320 €

*Labor costs considering staff qualification according to UBS-research prices and loans

Gasket replacement	Value
Number of connections in Biotech plant	1.000
Purchase of new gaskets	1.000€
Average intallation time to replace a gasket	20 min
Average time to re-torque a gasket	5 min
Time to replace & re-torque 1.000 connections	417h
Labor costs	40 €/h*
Overall Costs Gasket Replacement	17.680€

Downtime	Value
Inspection (2 FTEs)	20 h
Procurement/Project Management (2 FTEs)	15 h
Cleaning Flanges / Gasket Replacement (10 FTEs)	75 h
Pressure tests + Passivation	80 h
Overall downtime	190 h

Maintenance Cost

Calculation of installation costs + Gaskets Sticking to Flanges + What else?

30.06.2021 I 9 / 27 Maintenance in Biotech plants (Flex-Pure™ EPDM)

There is a Better Way

What if...

- You could reduce your maintenance efforts significantly by using biopharma grade gaskets, that do not stick to your stainless-steel flanges?
- By using these gaskets, you could eliminate the need of endlessly checking your sealing connections?
- Not only that, what if these high-purity gaskets could deliver a higher sealing performance, even in the most challenging hygienic applications?

Safety Factor

For example:

- Steam-In-Place (SIP) and Cleaning-In-Place (CIP) media
 - Temperature cycling, etc.

Temperature Range

Sterilization

Our Solution – Flex-Pure™ EPDM

Gaskets for hygienic clamp connection (Tri-Clamp)

Gaskets for hygienic clamp connection (Tri-Clamp)

Key Benefits

- Laser marked by default with Lot number and material name
- Full and Easy Traceability
- Highest Purity of Products Peroxide Cured
- Suitable for SIP and CIP
- Good Steam Resistance Very low swell and minimal loss of physical properties after repeated steam cycling
- Good Chemical Resistance Very low swell and minimal loss of physical properties after long-term exposure to CIP media
- Clean and Easy Removal of gaskets No sticking to the flanges
- Low Extractable values
- Excellent Dimensional Stability
- Very low Compression Set for best Sealing Performance

Gaskets for hygienic clamp connection (Tri-Clamp)

Regulatory Compliance

- FDA 21 CFR177.2600 (Formulation review & Extraction testing)
- USP Class VI <87>, <88> 121°C (In-Vivo and In-Vitro Biocompatibility Testing)
- 3A Sanitary Standard 18-03 (Multiple-Use Rubber as Product Contact Surfaces in Dairy Equipment)
- EC1935/2004 (Food Contact Regulation)
- ADI (Animal Derived Ingredient) Free (EMEA 410/01)
- Manufactured in compliance with FDA 21CFR174.5 (cGMP)
- Manufactured in compliance with EC 2023/2006 (GMP)

In-House Testing Capabilities

Chemical lab

Compound lab

Physical lab

Functional lab

30.06.2021 I 14 / 27 I Maintenance in Biotech plants (Flex-Pure™ EPDM)

Steam-In-Place Testing

Steam-In-Place test stand for hygienic gaskets

SIP (Hygienic Gaskets) Test Control Panel

Plot of SIP (Hygienic Gaskets) Cycles in Series

Steam-In-Place Testing

- Open nitrogen supply valve and set pressure regulator to 100 psi / 6,9 bar.
- Submerge test spool in water tank. Hold for 1 minute to test shell.

Acceptance Criteria:

No bubbles are permitted to break the surface of the water when the spool is immersed in water.

Steam-In-Place Testing

After exposure to 500 SIP cycles: Comparison of stainless-steel flanges after removal of EPDM gaskets

Flex-Pure[™] EPDM

EPDM-B

30.06.2021 I 17 / 27 I Maintenance in Biotech plants (Flex-Pure™ EPDM)

Physical Property testing

Physical Properties	Test method	Flex-Pure™ EPDM	EPDM - A	EPDM - B	EPDM - C	EPDM - D
Hardness (Shore A)	ASTM D 2240	75 ±5	76	77	71	77
Tensile Strength (MPa)	ISO 37 Type 1	19,5 (2828 psi)	16,4 (2379 psi)	12,9 (1880 psi)	7,1 (1030 psi)	16,2 (2350 psi)
Elongation (%)	ISO 37 Type 1	205	130	381	152	386
Specific Gravity (g/cm³)	ISO 2781 A	1,14	-	1,29	1,07	1,11
100% Modulus (MPa)	ISO 37 Type 1	6,5 (943 psi)	-	3,4 (488 psi)	4,5 (652 psi)	4,2 (612 psi)
Compression Set (%) 22 hours @ 100°C	ISO 815 / ASTM D 395/B	6	-	-	-	-
Compression Set (%) 22 hours @ 150°C	ISO 815 / ASTM D 395/B	11,6	-	25,7	13,6	13,6
Compression Set (%) 48 hours @ 100°C	ASTM D 395/B	-	4,2	-	-	-
Compression Set (%) 48 hours @ 150°C	ASTM D 395/B	-	10	-	-	-

Our Solution - Flex-Pure™ EPDM

Steam Immersion Testing

- Steam Immersion Testing (or Steam Aging) is part of our Gate 1 Screening procedures, when developing and validating new compounds.
- Besides testing physical properties, we have performed extensive steam testing utilizing Parr bombs (pressure equipment) and glass tubes.
- EPDM materials are exposed to steam (liquid and gas phase) at 302°F(150°C) for duration of 70h. After exposure time, the key physical properties are measure again and a "before/after" comparison is made. The results are displayed on following slide.

Picture Credit: Parr Instrument Company

Steam Immersion Testing

Change in Elongation (70h at 302°F/150°C)

Change in Tensile Strength (70h at 302°F/150°C)

Change in Hardness (70h at 302°F/150°C)

30.06.2021 I 20 / 27 Maintenance in Biotech plants (Flex-Pure™ EPDM)

a Garlock Hygienic Technologies company

Steam Immersion Testing

- Rubber Fab Flex-Pure[™] EPDM shows best in class resistance to steam exposure (see previous slide)
- Even after prolonged exposure to steam (168h), our Flex-Pure[™] EPDM shows only minimal change of physical properties.

Flex-Pure[™] EPDM (168h at 302°F/150°C)

Dry Heat - Surface Adhesion

EPDM gasket and stainless-steel flanges after exposure to dry heat (24h @ 130°C/266°F):

EPDM-B

30.06.2021 I 22 / 27 I Maintenance in Biotech plants (Flex-Pure™ EPDM)

Dry Heat - Surface Adhesion

EPDM gasket and stainless-steel flanges after exposure to dry heat (24h @ 130°C/266°F):

Flex-Pure[™] EPDM

30.06.2021 I 23 / 27 I Maintenance in Biotech plants (Flex-Pure™ EPDM)

CIP Detergent (Alkaline and Acid) exposure testing

Flex-Pure[™] EPDM

CIP 100®* (4% by volume in de-ionized water)	Unit	4 weeks at 60°C/140°F
Hardness Change	IRHD	-0,9
Tensile Change	%	1,9
Elongation Change	%	-3,3
Volume Change	%	0,53

* Based on potassium hydroxide. CIP 100® is a registered trademark of Steris Corporation.

CIP 200®* (4% by volume in de-ionized water)	Unit	4 weeks at 60°C/140°F
Hardness Change	IRHD	-1,8
Tensile Change	%	2,7
Elongation Change	%	-2,9
Volume Change	%	0,61

* Based on phosphoric acid. CIP 200® is a registered trademark of Steris Corporation.

EPDM-A

CIP 100® (4% by volume in de-ionized water)	Unit	4 weeks at 60°C/140°F
Hardness Change	IRHD	-2
Tensile Change	%	-9,7
Elongation Change	%	-7
Volume Change	%	2,6

CIP 200® (4% by volume in de-ionized water)	Unit	4 weeks at 20°C/68°F
Hardness Change	IRHD	0
Tensile Change	%	-24
Elongation Change	%	-16
Volume Change	%	0,1

Gaskets for hygienic clamp connection (Tri-Clamp)

Key Benefits

- Laser marked by default with Lot number and material name
- Full and Easy Traceability
- Highest Purity of Products Peroxide Cured
- Clean and Easy Removal of gaskets No sticking to the flanges
- Suitable for SIP and CIP
- Good Steam Resistance Very low swell and minimal loss of physical properties after repeated steam cycling
- Good Chemical Resistance Very low swell and minimal loss of physical properties after long-term exposure to CIP media
- Low Extractable values
- Excellent Dimensional Stability
- Very low Compression Set for best Sealing Performance

30.06.2021 I 25 / 27 I Maintenance in Biotech plants (Flex-Pure™ EPDM)

Rubber Fab - Flex-Pure[™] Gaskets

Flex-Pure[™] NEW PRODUCTS Flex-Pure[™] NEW DUCTS</sup> Silicone - Platinum cured EPDM - Peroxide-cured FKM - Peroxide cured

Sanitary Tri-Clamp[®] gasket

Sanitary Tri-Clamp[®] gasket

Thank you for your attention!

Do you have any questions?

Get in touch with our team!

Sascha Butter Product Manager Europe

Mobile +49 160 92388039 sbutter@rubberfab.com | <u>www.rubberfab.com</u>

Christoph Neuffer Application Engineer

Mobile +49 176 56668135 cneuffer@rubberfab.com | <u>www.rubberfab.com</u>

Dominik Wiese Area Sales Manager Europe

Mobile +49 160 91769096 dwiese@rubberfab.com | <u>www.rubberfab.com</u>

European Warehouse - PSI Products GmbH - Ulrichstrasse 25 - 72116 Mössingen / Germany - Office +49 7473 3781 731 rubberfab.europe@rubberfab.com

Visit us

💕 <u>Rubber Fab on Twitter</u>

Rubber Fab on Youtube

in Rubber Fab on Linkedin

